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The problem of homogeneous helical motion in a cone of finite dimensions 
is examined (the similar problem for an infinite cone has been formulated 

by Vasil’ev [ 1 I). 

We shall consider that the fluid is ideal and 

3-r; s 42 incompressible and that within a cone there is a 
ff P 

1 

x 

f 

homogeneous helical flow symmetric with respect to 

..k 

9 

the axis of the cone. Fluid enters the cone through 

8, an annular slit in the amount p units per second 
,‘; 2% 

/ 

PO and leaves through the apex and the point S in the 

/ 
amounts q1 and q2, respectively. 

0; The length of a generator of the cone is R. and 

the half-angle of the apex is 8,. From above the 
Fig. 1, cone is bounded by a spherical surface of radius 

RO. which has an aperture S on the axis of the cone 
through which the fluid flows out (Fig. 1). Such a scheme reflects 
approximately the principle of action of a hydro-cyclone. 

The problem is reduced to solving the inhomogeneous differential equa- 
tion Cl 1 

(k, c = const) 

in the region 0 Q r < Ro, O< 8 Go0 for the boundary conditions 

$(r. 0) =O, $(r, 80) =$I, rp(R,, 0) =$ (I)~ = $$, q2 = +$ 
.> 

(2) 
. 

In place of the stream function $(r, 8) we shall introduce a new func- 
tion u(r, 8) which is connected with $(r, 8) by the relation 

(3) 
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Equation (1) takes the form 

sine 8 !!$+~~~_.&~)+k2u=-kC--~-.-(kl--~)S’n2~ (4) 

The boundary conditions for the function u(r. 8) take the form 

u (r, 0) = 0, 

We shall seek the 

ordered with respect to the eigen-functions N,(8). We shall determine 
the form of the eigen-functions. Separating the variables in the homo- 
geneous equation which corresponds to the inhomogeneous equation (4), we 
obtain for the determination of the function N(8) the differential equa- 
t ion 

u (r, 90) = 0, u (I?,. 8) = $2 - $1 sin2‘e siiqyj 
function u(r. 8) in the form of the series 

u (r, 8) = B M,(r) N, (0) 
?I=1 

(6) 

sin e 
( 

’ 
sin 

‘+v(v+i)N=O (7) 

which by the substitution x = cos 8 reduces to the form 

$1~ 
dz2 

+v(v+i) N=O 

i-E?+ 

The general integral of this equation for #V not equal to zero or a 
negative integer is written as 

N, (4 = l/l - z2 [Q’,’ (4 + B,Q> (41 

or, transforming to the variable 8 

N, (8) = sin 0 [A,P,’ (~0s 8) + BVQv* (~0s fl)J 

where Pv ‘( cos 8) and Q,‘(cos 8) are associated begendre functions. 

Since the function u(r, 8) vanishes for 8 = 0 and the product 
Q,‘(cos 8) sin 8 tends to a constant as 8 + 0. B,, must be set equal to 
zero to satisfy the boundary condition on the axis. 

To satisfy the boundary condition on the lateral surface of the cone 
it is necessary to satisfy the condition P,‘(cos 8,) = 0; the eigen- 
values v n, are determined from this transcendental equation. 

The functions 
N,(e) = sin ePynl (~0s 8) 
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are the eigen-functions of the boundary-value problem under considera- 
tion. 

Multiplying both sides of (6) by p(e) N,(8) de, where ~(8) is 

weighting function, and integrating between the limits from 0 to 
obtain 

80 

-w, (4 = & s u (rn 0) P (‘3) N, (8) de p (e) fN, (ewe 
0 0 

a 

8 o, we 

(8) 

where Nn2 is the norm of the eigen-functions. From Equation (7) it is 
seen that p(8) = cos 8. 

To determine the coefficients of the series M,(r) we shall multiply 
Equation (4) by 

N,,-a ~(e)sin epvnl(cos We 

and integrate from 0 to 19~; using (8) and the first two conditions of 
(5) we obtain 

M,= - Wa, + W&J + %P, -$ (9) 

Here and below. the designations 

fJ0 00 
1 

a,=- 
NT%= s 

pv; (~0s e) de, Pn= i sina &, N,,a s 
sin* ep,,l (COS 8) fze w 

0 0 

have been introduced. 

The function M,(r) is subject to the boundary conditions: 

1) for r + 0, the function Mn(r) must have a finite value; 

2) for r = I?,. in accordance with (8), (10) and the third condition 

of (5) 

BY substituting M,(r) = dr ,L,(r) and z = kr, Equation (9) reduces to 
the form 

%I 
-+ dze 

The general solution of this 

L, -_ _ ,$!’ + q$, ) k’l: z-% + 2$lk’+3nz-5” 

equation is written as [2 1 
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where Sp 1/ (x) is the Lommel function: for brevity, the designation has 
been intkoduced 

We shall transform (12) back to the function M,,(z) and to the vari- 
able r: 

Therefore 3, must be set equal to zero. Using condition (11) we de- 
termine the constant of integration 

The final expression for the stream function can now be written 
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The velocity components are expressed in terms of $I(r, 8) by the 
formulas 

From the first formula it is seen that the circumferential velocity 
becomes infinite on the axis of the cone for Cf 0. This explains the 
formation of the air column at the axis of the cone which, in fact, is 
observed in the hydro-cyclone. 

Sntroduoing the dimensionless quantities p = r/R*, k = KRU, y = z&/$~, 
Formula (13) can be rewritten in a form more convenient for COmPUtationS: 

+ p, lfxp ck._5/*, pn w - %, un MPH} sin BP”: (cos 0) + 

If we pass to the limit as k + 0 in the solution thus found, we obtain 

the solution to the problem of the potential motion of a fluid in a cone. 

To obtain such a solution k could have been set equal to zero in (9) and 

the function M,(r) then determined from the differential equation so ob- 

tained. Both paths lead to one and the same result, namely 

- = se + 5 {pqr - P,,S y, $+ *)I pYtifl- P(P. 0) %I 

*1 n=1 
y, (v, I- 3) I 

sin Q P,,l (COs 8). 

solutions to problems in other special cases can also be obtained 
from (14). Thus, y = 0 corresponds to the absence of the aperture at the 
point S, and y = 1 corresponds to the absence of the annular slit. A 

method for determining the eigen-values v, and for calculating Na2, an, 
p,, remains to be shown. 

The formula 

P"" (cos 6) = (- 1) 
mr+3-+v 

r (y - m + 1) pv-m tcos 8) 

is valid for integral values of I. 

From this formula it is seen that the functions P,‘(cos 8) and 
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PlJ -l(cos 8) have the same roots vn. A method for 

the equation Pv h as been described 
[3 1. 

-l(cos 8,) = 0 

determining the roots of 
in the work of MacDonald 

For small values of 6, the following approximate formula can be used 

to determine the roots of the transcendental equation P,-‘(cos 8,) = 0 

where X, is the nth 

But if 8, is not 

v, + -g- = 5, + 

can be used for the same purpose, where 

1 *?I -- 
2 - 2 sin l/x B0 

i-+sir?+(i---$)I 

root, different from zero, of the equation J,(X) = 0. 

small, then the formula [3 1 

h 
eo (1 + %) + 

ba ah 
00 (1 -I- xn) (2 + xn) - 80 (1 + “,)Z + * . . (IS, 

Ia - -ha cos (%n - eo) al _ 
28 2sin9, ’ 

b1 = la - 4ma sin (1/e az - &J 
22 2 sin e0 

In the case under consideration a = 1. By means of simple calcula- 

tions we find that 

N,,a=- 
sin cop,, (~0s eo) a~,,1 (~0s eo) 

2v* + 1 
v, (Vn + 1) av (17; 

pVn (COS e,) - I 
u, = N,a ’ 

p = 
11 

bn + 1) P,~_~:(cos eo) 
sin e. (Y,, + 2) (vn - 1) N,,2 a 

To calculate the derivative d P,i(cos 8,)/dv, we shall examine the 

identity 

Pvnl (COS 0) = 0 

Considering the left-hand side as a function of 8 and ,v,, we find the 

complete differential 

a~,,’ (cos 8) q,l(cos 8) 

av7l 
dv,, + 

ae 
de = 0 

Hence we have 
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Using the recurrence relation 

sin 8 
dPvnl (cos 0) 

de 
= - v, (vn + 1) sin QP,, (cos fj) - cos fJP,*l (co8 f_+> 

and taking into consideration that P, ‘(co, 8,) = 0, we obtain 
n 

dP”,” (cos 8) 

dfl e-e, 
=L‘ - v, (vn + 1) pvn (cos eo; 

Formula (16) gives V, as a function of 6; for this it is necessary to 
replace 8, in it by 0 and to take into consideration that x,, q, bl, . . . 
are, in turn, dependent on 8. Now, by virtue of (17) 

Associated Legendre functions with integral indices only have been 
tabulated, But in the problem under consideration the lower index of 
these functions may have any value. It is not feasible to calculate these 
functions by means of the hypergeometric series in which they are 
expressed because of the poor convergence of these series. For non- 
integral values of .vn the function P,, ‘(cos 8) can be calculated by in- 

terpolation, for example using parabolas. 

The computations are considerably simplified by making use of the 
asymptotic representations of the functions Py ‘(cos 8) and P, (cos 8) 

In [ 4 1 the asymptoticnformulas 
n 

for large values of ,v n’ 

have been determined. 

Good results are obtained even for 1 = 10. For f = V, and I = 1 we 
have 
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Fig. 2. 

1 (co.7 0) = - pn (&JhJ1 (&I 0) 
+* 

0 ( > ‘12 (19) 
PYn (cos 8) = - sin fJ Jo @,x0) 

From the first formula it is seen that W, 
can be determined from the simple relation 

where sn is the nth root, different from zero, 
of the equation J,(r) = 0. 

If Expression (19) for P, ‘(COS 8) fs used 
we obtain for Nn2 n 

For large arguments the asymptotic formula 

is valid. 

Taking this expression into consideration and also the fact that the 
function Jo(pnf3,) attains extrema at the points ~,8,. we obtain the very 
simple formula 

(21) 

In calculating the quantity Nn2 for the first root the relative error 
between Formulas (18) and (21) for the largest angle of practical inter- 
est 8, = l/6 v does not exceed 3%. With increasing root number this 
error decreases; it also decreases with decreasing angle 8,. 

The difference in the values of u,,, calculated according to Formulas 
(16) and (20) for Be = l/6 n, appears in the third decimal point. All of 
this confirms the fact that Formulas (19) to (21) can be used for the 
calculations. Expression (14) for the stream function can be simplified 
with the aid of Formulas (19) and (21) to 
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+ b, I$ (23-s I, pn (XP) - %. pn (xP))} V 0 sinOJ1 (IJ,~) - 

(‘2) 

Here 

a _ 00 “2 
11 ( ) sin fjo Jo(P.,eo) - 1 

(Yn + 1) (Yn - 1/2) 

bfl = - (vn + 2) (vn - 1) sine, (&>‘l’Ji [(s -+) eo] 

With the help of these formulas calculations have been carried out 
for the following initial data: 8, = l/6 R, K = 4, C/klCIl = - 4, y = - 2. 
Streamlines (Fig. 2) have been constructed on the basis of the results 
obtained. From the figure it is seen that the stream surfaces obtained 
correctly reflect the picture of the motion in a part of the fluid in a 
hydro-cyc lone. 

With increasing absolute value of the parameter C/k@1 the separation 
line is lowered and closed streamlines appear near the cover, forming a 
stagnant zone. In this zone the fluid circulates without issuing from 
the cone. 

It remains to note that the series (22) converges rapidly up to 
approximately ‘p = 0.9. and that for p > 0.9 the convergence is weak and 
is weaker as the cover is approached. 
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2. 

3. 
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